A quadratic rate of asymptotic regularity for CAT(0)-spaces
نویسندگان
چکیده
منابع مشابه
A quadratic rate of asymptotic regularity for CAT(0)-spaces
In this paper we obtain a quadratic bound on the rate of asymptotic regularity for the Krasnoselski-Mann iterations of nonexpansive mappings in CAT(0)-spaces, whereas previous results guarantee only exponential bounds. The method we use is to extend to the more general setting of uniformly convex hyperbolic spaces a quantitative version of a strengthening of Groetsch’s theorem obtained by Kohle...
متن کاملAsymptotic aspect of quadratic functional equations and super stability of higher derivations in multi-fuzzy normed spaces
In this paper, we introduce the notion of multi-fuzzy normed spaces and establish an asymptotic behavior of the quadratic functional equations in the setup of such spaces. We then investigate the superstability of strongly higher derivations in the framework of multi-fuzzy Banach algebras
متن کاملLoss of Gevrey Regularity for Asymptotic Optics
In this paper we will investigate some aspects of the asymptotic behavior of oscillatory integrals from the Gevrey point of view. We will give formal asymptotic expansions and study the Gevrey character of oscillatory integrals, in comparison with the Gevrey character of their amplitudes. We will deduce a formula for the loss of Gevrey regularity both for phase functions in the Morse class and ...
متن کاملUniform asymptotic regularity for Mann iterates
In [16] we obtained an effective quantitative analysis of a theorem due to Borwein, Reich and Shafrir on the asymptotic behavior of general KrasnoselskiMann iterations for nonexpansive self-mappings of convex sets C in arbitrary normed spaces. We used this result to obtain a new strong uniform version of Ishikawa’s theorem for bounded C. In this paper we give a qualitative improvement of our re...
متن کاملPath regularity and explicit convergence rate for BSDE with truncated quadratic growth ∗
We consider backward stochastic differential equations with drivers of quadratic growth (qgBSDE). We prove several statements concerning path regularity and stochastic smoothness of the solution processes of the qgBSDE, in particular we prove an extension of Zhang's path regularity theorem to the quadratic growth setting. We give explicit convergence rates for the difference between the solutio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2007
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2006.01.081